53 research outputs found

    Runtime Enforcement of Timed Properties

    Get PDF
    International audienceRuntime enforcement is a powerful technique to ensure that a running system respects some desired properties. Using an enforcement monitor, an (untrustworthy) input execution (in the form of a sequence of events) is modified into an output sequence that complies to a property. Runtime enforcement has been extensively studied over the last decade in the context of untimed properties. This paper introduces runtime enforcement of timed properties. We revisit the foundations of runtime enforcement when time between events matters.We show how runtime enforcers can be synthesized for any safety or co-safety timed property. Proposed runtime enforcers are time retardant: to produce an output sequence, additional delays are introduced between the events of the input sequence to correct it. Runtime enforcers have been prototyped and our simulation experiments validate their effectiveness

    Automatic Test Generation for Data-Flow Reactive Systems Modeled by Variable Driven Timed Automata

    Get PDF
    In this paper, we handle the problem of conformance testing for data-flow critical systems with time constraints. We present a formal model (Variable Driven Timed Automata) adapted for such systems inspired from timed automata using variables as inputs and outputs, and clocks. In this model we consider urgency and the possibility to fire several transitions instantaneously. We present a conformance relation for this model and we propose a test generation method using a test purpose approach. This method is illustrated with an example on a "Bi-manual command"

    Automatic Test Generation for Data-Flow Reactive Systems with time constraints

    Get PDF
    International audienceIn this paper, we handle the problem of conformance testing for data-flow critical systems with time constraints. We present a formal model (Variable Driven Timed Automata) adapted for such systems inspired from timed automata using variables as inputs and outputs, and clocks. In this model, we consider urgency and the possibility to fire several transitions instantaneously. We present a conformance relation for this model and we propose a test generation method using a test purpose approach, based on a region graph transformation of the specification

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Two complementary approaches to test robustness of reactive systems

    No full text
    International audienc

    Test de robustesse des systèmes temps-réel (thèse pour le doctorat en sciences spécialité Informatique)

    No full text
    De nos jours, les systèmes temps-réel deviennent de plus en plus complexes et ont souvent de lourdes responsabilités. C'est pourquoi il est nécessaire de valider ce genre de systèmes avant leur mise en service. Cette thèse va se positionner dans le cadre du test de robustesse, plus particulièrement pour les systèmes temps-réel et à base de composants. Dans un premier temps, nous présentons une méthode de test de robustesse pour système temps-réel, considérant comme point de départ deux spécifications sous forme d'automates temporisés : une nominale et une dégradée. Nous provoquons une situation inattendue pour le système en mutant les séquences de test. Dans une seconde partie, nous exposons une architecture et un algorithme d'exécution pour tester un système temps-réel à base de composants. Dans une troisième partie, nous présentons un outil de génération de séquences de test que nous avons développéNowadays, real-time systems are getting more an more complex and take often care of human lifes or sensitive systems. Therefore, such systems have to be validated before beeing used. This document deals with robustness testing, especially for real-time and component based systems. Firstly, we present a robustness testing method for real-time systems, considering two specifications given in the timed automata model : a nominal one and a degraded one. We provoque an unexpected situation for the system by adding some hazards in the test sequences. Secondly, we expose an architecture an a test execution algorithm for real-time component based systems. Thirdly, we present our tool for sequence generationREIMS-BU Sciences (514542101) / SudocSudocFranceF
    • …
    corecore